Sunday, July 21, 2019

DC MOTOR MCQ PART -1

1. No-load speed of which of the following motor will be highest ?
(a) Shunt motor
(b) Series motor
(c) Cumulative compound motor
(d) Differentiate compound motor


Ans: b


2. The direction of rotation of a D.C. series motor can be changed by
(a) interchanging supply terminals
(b) interchanging field terminals
(c) either of (a) and (b) above
(d) None of the above


Ans: b


3. Which of the following application requires high starting torque ?
(a) Lathe machine
(b) Centrifugal pump
(c) Locomotive
(d) Air blower


Ans: c


4. If a D.C. motor is to be selected for conveyors, which rriotor would be preferred ?
(a) Series motor
(b) Shunt motor
(c) Differentially compound motor
(d) Cumulative compound motor


Ans: a


5. Which D.C. motor will be preferred for machine tools ?
(a) Series motor
(b) Shunt motor
(c) Cumulative compound motor
(d) Differential compound motor


Ans: b


6. Differentially compound D.C. motors can find applications requiring
(a) high starting torque
(b) low starting torque
(c) variable speed
(d) frequent on-off cycles


Ans: b


7. Which D.C. motor is preferred for elevators ?
(a) Shunt motor
(b) Series motor
(c) Differential compound motor
(d) Cumulative compound motor


Ans: d


8. According to Fleming's left-hand rule, when the forefinger points in the direction of the field or flux, the middle finger will point in the direction of
(a) current in the conductor aovtaat of conductor
(c) resultant force on conductor
(d) none of the above


Ans: a


9. If the field of a D.C. shunt motor gets opened while motor is running
(a) the speed of motor will be reduced %
(b) the armature current will reduce
(c) the motor will attain dangerously high speed 1
(d) the motor will continue to nuvat constant speed


Ans: c


10. Starters are used with D.C. motors because
(a) these motors have high starting torque
(b) these motors are not self-starting
(c) back e.m.f. of these motors is zero initially
(d) to restrict armature current as there is no back e.m.f. while starting


Ans: d


11. In D.C. shunt motors as load is reduced
(a) the speed will increase abruptly
(b) the speed will increase in proportion to reduction in load
(c) the speed will remain almost/constant
(d) the speed will reduce


Ans: c


12. A D.C. series motor is that which
(a) has its field winding consisting of thick wire and less turns
(b) has a poor torque
(c) can be started easily without load
(d) has almost constant speed


Ans: a


13. For starting a D.C. motor a starter is required because
(a) it limits the speed of the motor
(b) it limits the starting current to a safe value
(c) it starts the motor
(d) none of the above


Ans: b


14. The type of D.C. motor used for shears and punches is
(a) shunt motor
(b) series motor
(c) differential compoutid D.C. motor
(d) cumulative compound D.C. motor


Ans: d


15. If a D.C. motor is connected across the A.C. supply it will
(a) run at normal speed
(b) not run
(c) run at lower speed
(d) burn due to heat produced in the field winding by .eddy currents


Ans: d


16. To get the speed of D.C, motor below the normal without wastage of electrical energy is used.
(a) Ward Leonard control
(b) rheostatic control
(c) any of the above method
(d) none of the above method


Ans: a


17. When two D.C. series motors are connected in parallel, the resultant speed is
(a) more than the normal speed
(b) loss than the normal speed
(c) normal speed
(d) zero


Ans: c


18. The speed of a D.C. shunt motor more than its full-load speed can be obtained by
(a) decreasing the field current
(b) increasing the field current
(c) decreasing the armature current
(d) increasing the armature current


Ans: a


19. In a D.C. shunt motor, speed is
(a) independent of armature current
(b) directly proportional to the armature current
(c) proportional to the square of the current
(d) inversely proportional to the armature current


Ans: a


20. A direct on line starter is used: for starting motors
(a) iip to 5 H.P.
(b) up to 10 H.P.
(c) up to 15 H.P.
(d) up to 20 H.P.


Ans: a


DC GENERATOR PART - 2

1. In D.C. generators, current to the external circuit from armature is given through
(a) commutator
(b) solid connection
(c) slip rings
(d) none of above


Ans: a


2. Brushes of D.C. machines are made of
(a) carbon
(b) soft copper
(c) hard copper
(d) all of above


Ans: a


3. If B is the flux density, I the length of conductor and v the velocity of conductor, then induced e.m.f. is given by
(a)Blv (b)Blv2 (c)Bl2v (d)Bl2v2


Ans: a


4. In case of a 4-pole D.C. generator provided with a two layer lap winding with sixteen coils, the pole pitch will be
(a) 4
(b) 8
(c) 16
(d) 32


Ans: b


5. The material for commutator brushes is generally
(a) mica
(b) copper
(c) cast iron
(d) carbon


Ans: d


6. The insulating material used between the commutator segments is normally
(a) graphite
(b) paper
(c) mica
(d) insulating varnish


Ans: c


7. In D.C. generators, the brushes on commutator remain in contact with conductors which
(a) lie under south pole
(b) lie under north pole
(c) lie under interpolar region
(d) are farthest from the poles


Ans: c


8. If brushes of a D.C. generator are moved in order to bring these brushes in magneticneutral axis, there will be
(a) demagnetisation only
(b) cross magnetisation as well as magnetisation
(c) crossmagnetisation as well as demagnetising
(d) cross magnetisation only


Ans: c


9. Armature reaction of an unsaturated D.C. machine is
(a) crossmagnetising
(b) demagnetising
(c) magnetising
(d) none of above


Ans: a


10. D.C. generators are connected to the busbars or disconnected from them only under the floating condition
(a) to avoid sudden loading of the primemover
(b) to avoid mechanicaljerk to the shaft
(c) to avoid burning of switch contacts
(d) all above


Ans: d


11. Eddy currents are induced in the pole shoes of a D.C. machine due to
(a) oscillating magnetic field
(b) pulsating magnetic flux
(c) relative rotation between field and armature
(d) all above


Ans: c


12. In a D.C. machine, short-circuited field coil will result in
(a) odour of barning insulation
(b) unbalanced magnetic pull producing vibrations
(c) reduction of generated voltage for which excitation has to be increased to maintain the voltage
(d) all above


Ans:


13. Equilizer rings are required in case armature is
(a) wave wound
(b) lap wound
(c) delta wound
(d) duplex wound


Ans: b


14. Welding generator will have
(a) lap winding
(b) wave winding
(c) delta winding
(d) duplex wave winding


Ans: a


15. In case of D.C. machine winding, number of commutator segments is equal to
(a) number of armature coils
(b) number of armature coil sides
(c) number of armature conductors
(d) number of armature turns


Ans: a


16. For a D.C. machines laboratory following type of D.C. supply will be suitable
(a) rotary converter
(b) mercury are rectifier
(c) induction motor D.C. generator set
(d) synchronous motor D.C. generator set


Ans: c


. 17. The function of pole shoes in the case of D.Cmachine is
(a) to reduce the reluctance of the magnetic path
(b) to spread out the flux to achieve uniform flux density
(c) to support the field coil
(d) to discharge all the above functions


Ans: d


18. In the case of lap winding resultant pitch is
(a) multiplication of front and back pitches
(b) division of front pitch by back pitch
(c) sum of front and back pitches
(d) difference of front and back pitches


Ans: d


19. A D.C. welding generator has
(a) lap winding
(b) wave moving
(c) duplex winding
(d) any of the above


Ans: a


20. As a result of armature reaction, the reduction in the total mutual air gap flux in a D.C. generator is approximately
(a) 40 percent
(b) 25 percent
(c) 10 percent
(d) 5 percent


Ans: d


Saturday, July 20, 2019

DC GENERATOR

1. Laminations of core are generally made of
(a) case iron
(b) carbon
(c) silicon steel
(d) stainless steel


Ans: c


2. Which of the following could be lamina-proximately the thickness of laminations of a D.C. machine ?
(a) 0.005 mm
(b) 0.05 mm
(c) 0.5 m
(d) 5 m


Ans: c


3. The armature of D.C. generator is laminated to
(a) reduce the bulk
(b) provide the bulk
(c) insulate the core
(d) reduce eddy current loss


Ans: d


4. The resistance of armature winding depends on
(a) length of conductor
(b) cross-sectional area of the conductor
(c) number of conductors
(d) all of the above


Ans: d


5. The field coils of D.C. generator are usually made of
(a) mica
(b) copper
(c) cast iron
(d) carbon


Ans: b


6. The commutator segments are connected to the armature conductors by means of
(a) copper lugs
(b) resistance wires
(c) insulation pads
(d) brazing


Ans: a


7. In a commutator
(a) copper is harder than mica
(b) mica and copper are equally hard
(c) mica is harder than copper
(d) none of the above


Ans: c


8. In D.C. generators the pole shoes are fastened to the pole core by
(a) rivets
(b) counter sunk screws
(c) brazing
(d) welding


Ans: b


9. According to Fleming's right-hand rule for finding the direction of induced e.m.f., when middle finger points in the direction of induced e.m.f., forefinger will point in the direction of
(a) motion of conductor
(b) lines of force
(c) either of the above
(d) none of the above


Ans: b


10. Fleming's right-hand rule regarding direction of induced e.m.f., correlates
(a) magnetic flux, direction of current flow and resultant force
(b) magnetic flux, direction of motion and the direction of e.m.f. induced
(c) magnetic field strength, induced voltage and current
(d) magnetic flux, direction of force and direction of motion of conductor


Ans: b


11. While applying Fleming's right-hand rule to And the direction of induced e.m.f., the thumb points towards
(a) direction of induced e.m.f.
(b) direction of flux
(c) direction of motion of the conductor if forefinger points in the direction of generated e.m.f.
(d) direction of motion of conductor, if forefinger points along the lines of flux


Ans: d


12. The bearings used to support the rotor shafts are generally
(a) ball bearings
(b) bush bearings
(c) magnetic bearmgs
(d) needle bearings


Ans: a


13. In D.C. generators, the cause of rapid brush wear may be
(a) severe sparking
(b) rough commutator surface
(c) imperfect contact
(d) any of the above


Ans: d


14. In lap winding, the number of brushes is always
(a) double the number of poles
(b) same as the number of poles
(c) half the number of poles
(d) two


Ans: b


15. For a D.C. generator when the number of poles and the number of armature conductors is fixed, then which winding will give the higher e.m.f. ?
(a) Lap winding
(b) Wave winding
(c) Either of (a) and (b) above
(d) Depends on other features of design


Ans: b


16. In a four-pole D.C. machine
(a) all the four poles are north poles
(b) alternate poles are north and south
(c) all the four poles are south poles
(d) two north poles follow two south poles


Ans: b


17. Copper brushes in D.C. machine are used
(a) where low voltage and high currents are involved
(b) where high voltage and small cur-rents are involved
(c) in both of the above cases
(d) in none of the above cases


Ans: a


18. A separately excited generator as compared to a self-excited generator
(a) is amenable to better voltage con-trol
(b) is more stable
(c) has exciting current independent of load current
(d) has all above features


Ans: d


19. In case of D.C. machines, mechanical losses are primary function of
(a) current
(b) voltage
(c) speed
(d) none of above


Ans: c


20. Iron losses in a D.C. machine are independent of variations in
(a) speed
(b) load
(c) voltage
(d) speed and voltage


Ans: b


Basic electrical engineering mcqs

https://youtu.be/soOsLyCNaPg

Top 100 Switchgear and Protection Interview Questions

Top 100 Switchgear and
Protection Interview
Questions
What are the functions of protective relays
To detect the fault and initiate the operation of the circuit breaker to isolate the defective element from the rest of the system, thereby protecting the system from damages consequent to the fault.
Give the consequences of short circuit.
Whenever a short-circuit occurs, the current flowing through the coil increases to an enormous value. If protective relays are present , a heavy current also flows through the relay coil, causing it to operate by closing its contacts.The trip circuit is then closed , the circuit breaker opens and the fault is isolated from the rest of the system. Also, a low voltage may be created which may damage systems connected to the supply.
Define protected zone.
Are those which are directly protected by a protective system such as relays, fuses or switchgears.If a fault occurring in a zone can be immediately detected and or isolated by a protection scheme dedicated to that particular zone.
What are unit system and non unit system?
A unit protective system is one in which only faults occurring within its protected zone are isolated.Faults occurring elsewhere in the system have no influence on the operation of a unit system.A non unit system is a protective system which is activated even when the faults are external to its protected zone.
What is primary protection?
Is the protection in which the fault occurring in a line will be cleared by its own relay and circuit breaker.It serves as the first line of defence.
What is back up protection?
Is the second line of defence , which operates if the primary protection fails to activate within a definite time delay.
Name the different kinds of over current relays.
Induction type non-directional over current relay,Induction type directional over current relay & current differential relay.
Define energizing quantity.
It refers to the current or voltage which is used to activate the relay into operation.
Define operating time of a relay.
It is defined as the time period extended from the occurrence of the fault through the relay detecting the fault to the operation of the relay.
Define resetting time of a relay.
It is defined as the time taken by the relay from the instant of isolating the fault to the moment when the fault is removed and the relay can be reset.
What are over and under current relays?
Overcurrent relays are those that operate when the current in a line exceeds a predetermined value. (eg: Induction type non-directional/directional overcurrent relay, differential overcurrent relay)whereas undercurrent relays are those which operate whenever the current in a circuit/line drops below a
predetermined value.(eg: differential over-voltage relay) Mention any two applications of differential relay.
Protection of generator & generator transformer unit; protection of large motors and busbars .
What is biased differential bus zone reduction?
The biased beam relay is designed to respond to the differential current in terms of its fractional relation to the current flowing through the protected zone. It is essentially an over-current balanced beam relay type with an additional restraining coil. The restraining coil produces a bias force in the opposite direction to the operating force.
What is the need of relay coordination?
The operation of a relay should be fast and selective, ie, it should isolate the fault in the shortest possible time causing minimum disturbance to the system. Also, if a relay fails to operate, there should be sufficiently quick backup protection so that the rest of the system is protected. By coordinating relays, faults can always be isolated quickly without serious disturbance to the rest of the system.
Mention the short comings of Merz Price scheme of protection applied to a power transformer.
In a power transformer, currents in the primary and secondary are to be compared. As these two currents are usually different, the use of identical transformers will give differential current, and operate the relay under no-load condition. Also, there is usually a phase difference between the primary and secondary currents of three phase transformers. Even CT’s of proper turnratio are used, the differential current may flow through the relay under normal condition.
What are the various faults to which a turbo alternator is likely to be subjected?
Failure of steam supply; failure of speed; overcurrent; over voltage; unbalanced loading; stator winding fault .
What is an under frequency relay?
An under frequency relay is one which operates when the frequency of the system (usually an alternator or transformer) falls below a certain value.
Define the term pilot with reference to power line protection.
Pilot wires refers to the wires that connect the CT’s placed at the ends of a power transmission line as part of its protection scheme. The resistance of the pilot wires is usually less than 500 ohms.
Mention any two disadvantage of carrier current scheme for transmission line only.
The program time (ie, the time taken by the carrier to reach the other endupto .1% mile); the response time of band pass filter; capacitance phase-shift of the transmission line .
What are the features of directional relay?
High speed operation; high sensitivity; ability to operate at low voltages; adequate short-time thermal ratio; burden must not be excessive.
What are the causes of over speed and how alternators are protected from it? Sudden loss of all or major part of the load causes overspeeding in alternators.
Modern alternators are provided with mechanical centrifugal devices mounted on their driving shafts to trip the main valve of the prime mover when a dangerous over-speed occurs.
What are the main types of stator winding faults?
Fault between phase and ground; fault between phases and inter-turn fault involving turns of the same phase winding.
Give the limitations of Merz Price protection.
Since neutral earthing resistances are often used to protect circuit from earthfault currents, it becomes impossible to protect the whole of a star-connected alternator. If an earth-fault occurs near the neutral point, the voltage may be insufficient to operate the relay. Also it is extremely difficult to find two identical CT’s. In addition to this, there always an inherent phase difference between the primary and the secondary quantities and a possibility of current through the relay even when there is no fault.
What are the uses of Buchholz’s relay?
Bucholz relay is used to give an alarm in case of incipient( slow-developing) faults in the transformer and to connect the transformer from the supply in the event of severe internal faults. It is usually used in oil immersion transformers with a rating over 750KVA.
What are the types of graded used in line of radial relay feeder?
Definite time relay and inverse-definite time relay.
What are the various faults that would affect an alternator?
Stator faults
1, Phase to phase faults 2, Phase to earth faults 3, Inter turn faults
(b)
1, Earth faults
2, Fault between turns
3, Loss of excitation due to fuel failure
1, Over speed
2, Loss of drive
3, Vacuum failure resulting in condenser pressure rise, resulting in shattering of the turbine low pressure casing
1, Fault on lines
2, Fault on busbars
Why neutral resistor is added between neutral and earth of an alternator?
In order to limit the flow of current through neutral and earth a resistor is introduced between them.
What is the backup protection available for an alternator?
Overcurrent and earth fault protection is the backup protections.
What are faults associated with an alternator?
External fault or through fault
Internal fault
1, Short circuit in transformer winding and connection 2, Incipient or slow developing faults
What are the main safety devices available with transformer?
Oil level guage, sudden pressure delay, oil temperature indicator, winding temperature indicator .
What are the limitations of Buchholz relay?
Only fault below the oil level are detected.
Mercury switch setting should be very accurate, otherwise even for vibration, there can be a false operation.
The relay is of slow operating type, which is unsatisfactory.
What are the problems arising in differential protection in power transformer and how are they overcome?
Difference in lengths of pilot wires on either sides of the relay. This is overcome by connecting adjustable resistors to pilot wires to get equipotential points on the pilot wires.
Difference in CT ratio error difference at high values of short circuit currents that makes the relay to operate even for external or through faults. This is overcome by introducing bias coil.
Tap changing alters the ratio of voltage and currents between HV and LV sides and the relay will sense this and act. Bias coil will solve this.
Magnetizing inrush current appears wherever a transformer is energized on its primary side producing harmonics. No current will be seen by the secondary. CT’s as there is no load in the circuit. This difference in current will actuate the differential relay. A harmonic restraining unit is added to the relay which will block it when the transformer is energized.
What is REF relay?
It is restricted earth fault relay. When the fault occurs very near to the neutral point of the transformer, the voltage available to drive the earth circuit is very small, which may not be sufficient to activate the relay, unless the relay is set for a very low current. Hence the zone of protection in the winding of the transformer is restricted to cover only around 85%. Hence the relay is called REF relay.
What is over fluxing protection in transformer?
If the turns ratio of the transformer is more than 1:1, there will be higher core loss and the capability of the transformer to withstand this is limited to a few minutes only. This phenomenon is called over fluxing.
Why busbar protection is needed?
Fault level at busbar is high
The stability of the system is affected by the faults in the bus zone.
A fault in the bus bar causes interruption of supply to a large portion of the system network.
What are the merits of carrier current protection?
Fast operation, auto re-closing possible, easy discrimination of simultaneous faults .
What are the errors in CT?
Ratio error
Percentage ratio error = [(Nominal ratio – Actual ratio)/Actual ratio] x 100 The value of transformation ratio is not equal to the turns ratio.
(b) Phase angle error:
Phase angle       =180/π[(ImCos δ-I1Sin δ)/nIs] What is field suppression?
When a fault occurs in an alternator winding even though the generator circuit breaker is tripped, the fault continues to fed because EMF is induced in the generator itself. Hence the field circuit breaker is opened and stored energy in the field winding is discharged through another resistor. This method is known as field suppression.
What are the causes of bus zone faults?
Failure of support insulator resulting in earth fault
Flashover across support insulator during over voltage Heavily polluted insulator causing flashover
Earthquake, mechanical damage etc.
What are the problems in bus zone differential protection?
Large number of circuits, different current levels for different circuits for external faults.
Saturation of CT cores due to dc component and ac component in short circuit currents. The saturation introduces ratio error.
Sectionalizing of the bus makes circuit complicated.
Setting of relays need a change with large load changes.
What is static relay?
It is a relay in which measurement or comparison of electrical quantities is made in a static network which is designed to give an output signal when a threshold condition is passed which operates a tripping device.
What is power swing?
During switching of lines or wrong synchronization surges of real and reactive power flowing in transmission line causes severe oscillations in the voltage and current vectors. It is represented by curves originating in load regions and traveling towards relay characteristics.
What is a programmable relay?
A static relay may have one or more programmable units such as microprocessors or microcomputers in its circuit.
What is CPMC?
It is combined protection, monitoring and control system incorporated in the static system.
What are the advantages of static relay over electromagnetic relay? o Low power consumption as low as 1mW
o No moving contacts; hence associated problems of arcing, contact bounce,erosion, replacement of contacts
o No gravity effect on operation of static relays. Hence can be used in vesselsie, ships, aircrafts etc.
o A single relay can perform several functions like over current, under voltage,single phasing protection by incorporating respective functional blocks. This is not possible in electromagnetic relays o  Static relay is compact
o Superior operating characteristics and accuracy
o Static relay can think , programmable operation is possible with static relay
o Effect of vibration is nil, hence can be used in earthquake-prone areas oSimplified testing and servicing. Can convert even non-electrical quantities to electrical in conjunction with transducers.
What is resistance switching?
It is the method of connecting a resistance in parallel with the contact space(arc). The resistance reduces the restriking voltage frequency and it diverts part of the arc current. It assists the circuit breaker in interrupting the magnetizing current and capacity current.
What do you mean by current chopping?
When interrupting low inductive currents such as magnetizing currents of the transformer, shunt reactor, the rapid deionization of the contact space and blast effect may cause the current to be interrupted before the natural current zero. This phenomenon of interruption of the current before its natural zero is called current chopping.
What are the methods of capacitive switching?
Opening of single capacitor bank
Closing of one capacitor bank against another What is an arc?
Arc is a phenomenon occurring when the two contacts of a circuit breaker separate under heavy load or fault or short circuit condition.
Give the two methods of arc interruption?
High resistance interruption:-the arc resistance is increased by elongating, and splitting the arc so that the arc is fully extinguished
Current zero method:-The arc is interrupted at current zero position that occurs100 times a second in case of 50Hz power system frequency in ac.
What is restriking voltage?
It is the transient voltage appearing across the breaker contacts at the instant of arc being extinguished.
What is meant by recovery voltage?
The power frequency rms voltage appearing across the breaker contacts after the arc is extinguished and transient oscillations die out is called recovery voltage.
What is RRRV?
It is the rate of rise of restriking voltage, expressed in volts per microsecond. It is closely associated with natural frequency of oscillation.
What is circuit breaker?
It is a piece of equipment used to break a circuit automatically under fault conditions. It breaks a circuit either manually or by remote control under normal conditions and under fault conditions.
Write the classification of circuit breakers based on the medium used for arc extinction?
Air break circuit breaker Oil circuit breaker
Minimum oil circuit breaker Air blast circuit breaker
SF6 circuit breaker
Vacuum circuit breaker
What is the main problem of the circuit breaker?
When the contacts of the breaker are separated, an arc is struck between them. This arc delays the current interruption process and also generates enormous heat which may cause damage to the system or to the breaker itself. This is the main problem.
What are demerits of MOCB?
Short contact life
Frequent maintenance Possibility of explosion
Larger arcing time for small currents Prone to restricts
What are the advantages of oil as arc quenching medium?
It absorbs the arc energy to decompose the oil into gases, which have excellent cooling properties
It acts as an insulator and permits smaller clearance between line conductors and earthed components
What are the hazards imposed by oil when it is used as an arc quenching medium? There is a risk of fire since it is inflammable. It may form an explosive mixture
with arc. So oil is preferred as an arc quenching medium.
What are the advantages of MOCB over a bulk oil circuit breaker?
It requires lesser quantity of oil
It requires smaller space
There is a reduced risk of fire
Maintenance problem are reduced
What are the disadvantages of MOCB over a bulk oil circuit breaker?
The degree of carbonization is increased due to smaller quantity of oil
There is difficulty of removing the gases from the contact space in time
The dielectric strength of the oil deteriorates rapidly due to high degree of carbonization.
What are the types of air blast circuit breaker?
Arial-blast type
Cross blast Radial-blast
What are the advantages of air blast circuit breaker over oil circuit breaker?
o The risk of fire is diminished
o The arcing time is very small due to rapid buildup of dielectric strengthbetween contacts
o The arcing products are completely removed by the blast whereas oildeteriorates with successive operations
What are the demerits of using oil as an arc quenching medium?
The air has relatively inferior arc quenching properties
The air blast circuit breakers are very sensitive to variations in the rate of rise of restriking voltage
Maintenance is required for the compression plant which supplies the air blast What is meant by electro negativity of SF6 gas?
SF6 has high affinity for electrons. When a free electron comes and collides with a neutral gas molecule, the electron is absorbed by the neutral gas molecule and negative ion is formed. This is called as electro negativity of SF6 gas.
What are the characteristic of SF6 gas?
It has good dielectric strength and excellent arc quenching property. It is inert, non-toxic, noninflammable and heavy. At atmospheric pressure, its dielectric strength is 2.5 times that of air. At three times atmospheric pressure, its dielectric strength is equal to that of the transformer oil.
Write the classifications of test conducted on circuit breakers.
Type test
Routine test Reliability test
Commissioning test
What are the indirect methods of circuit breaker testing?
o Unit testo  Synthetic test
o Substitution testing o Compensation testing o Capacitance testingWhat are the advantages of synthetic testing methods?
The breaker can be tested for desired transient recovery voltage and RRRV.
Both test current and test voltage can be independently varied. This gives flexibility to the test
The method is simple
With this method a breaker capacity (MVA) of five time of that of the capacity of the test plant can be tested.
How does the over voltage surge affect the power system?
The over voltage of the power system leads to insulation breakdown of the equipments. It causes the line insulation to flash over and may also damage the nearby transformer, generators and the other equipment connected to the line.
What is pick up value?
It is the minimum current in the relay coil  at which the relay starts to operate.
Define target.
It is the indicator used for showing the operation of the relay.
Define reach.
It is the distance upto which the relay will cover for protection.
Define blocking.
It means preventing the relay from tripping due to its own characteristics or due to additional relays.
Define a over current relay.
Relay which operates when the current ia a line exceeds a predetermined value.
Define an under current relay?
Relays which operates whenever the current in a circuit drops below a predetermined value.
Mention any 2 applications of differential relays.
Protection of generator and generator-transformer unit: protection of large motors and bus bars
Mention the various tests carried out in a circuit breaker at HV labs.
Short circuit tests, Synthetic tests& direct tests. Mention the advantages of field tests.
The circuit breaker is tested under actual conditions like those that occur in the network.
Special occasions like breaking of charging currents of long lines ,very short line faults ,interruption of small inductive currents etc… can be tested by direct testing only.
State the disadvantages of field tests.
The circuit breaker can be tested at only a given rated voltage and network capacity.
The necessity to interrupt the normal services and to test only at light load conditions.
Extra inconvenience and expenses in installation of controlling and measuring equipment in the field.
Define composite testing of a circuit breaker.
In this method the breaker is first tested for its rated breaking capacity at a reduced voltage and afterwards for rated voltage at a low current.This method does not give a proper estimate of the breaker performance.
State the various types of earthing.
Solid earthing, resistance earthing , reactance earthing , voltage transformer earthing and zig-zag transformer earthing.
What are arcing grounds?
The presence of inductive and capacitive currents in the isolated neutral system leads to formation of arcs called as arcing grounds.
What is arc suppression coil?
A method of reactance grounding used to suppress the arc due to arcing grounds.
State the significance of single line to ground fault.
In single line to ground fault all the sequence networks are connected in series. All the sequence currents are equal and the fault current magnitude is three times its sequence currents.
What are symmetrical components?
It is a mathematical tool to resolve unbalanced components into balanced components.
State the three sequence components.
Positive sequence components, negative sequence components and zero sequence components.
Define positive sequence component.
-has 3 vectors equal in magnitude and displaced from each other by an angle 120 degrees and having the phase sequence as original vectors.
Define zero sequence component.
They has 3 vectors having equal magnitudes and displaced from each other by an angle zero degees.
State the significance of double line fault.
It has no zero sequence component and the positive and negative sequence networks are connected in parallel.
Define negative sequence component.
It has 3 vectors equal in magnitude and displaced from each other by an angle 120 degrees and has the phase sequence in opposite to its original phasors.
State the different types of faults.
Symmetrical faults and unsymmetrical faults and open conductor faults. 92. State the various types of unsymmetrical faults.
Line to ground ,line to line  and double line to ground faults Mention the withstanding current in our human body.
9mA
State the different types of circuit breakers.
Air ,oil,vacuum circuit breakers.
Define per unit value.
It is defined as the ratio of actual value to its base value. 96. Mention the inductance value of the peterson’s coil.
L=1/3ωc2
Define single line diagram.
Representation of various power system components in a single line is defined as single line diagram.
Differentiate between a fuse and a circuit breaker.
Fuse is a low current interrupting device. It is a copper or an aluminium wire.Circuit breaker is a high current interrupting device and it act as a switch under normal operating conditions.
How direct tests are conducted in circuit breakers?
Using a short circuit generator as the source.
Using the power utility system or network as the source.
What is dielectric test of a circuit breaker?
It consists of overvoltage withstand test of power frequency lightning and impulse voltages.Testa are done for both internal and external insulation with switch in both open and closed conditions.

बिधुत धरा किसे कहते है -जब किसी चालक में मुक्त इलेक्ट्रॉन्स एक स्थान से दूसरे स्थान से दूसरे स्थान पर गतिमान होते है तो इलेक्ट्रॉन्स के इस बहाव को विधुत धरा कहते है । अर्थात कंडक्टर में इलेक्ट्रॉन्स के बहाव को इलेक्ट्रिक करंट कहते है । करंट को I द्वारा प्रदर्शित किया जाता है तथा करंट इकाई एम्पियर है । Voltage -किसी सर्किट के सिरों पर लगने वाला बिधुत वाहक बल वोल्टेज कहलाता है । वोल्टेज की इकाई वोल्ट है इसे वोल्ट में नापा जाता है तथा वोल्टेज को V से प्रदर्शित किया जाता है । Potential difference - विभान्तर - वह वोल्टेज जिसके कारण वश इलेक्ट्रॉन्स इलेक्ट्रिक सर्किट में बहन शुरू करते है विभान्तर कहलाता है । पोटेंशियल डिफ्रेंस को V द्वारा दर्शाया जाता है और इकाई वोल्ट है । E.M.F =Electromotive Force = विधुत वाहक बल - विधुत परिपथ में लगने वाला वह दबाब जो इलेक्ट्रॉन्स को परिपथ में बहने के लिए बाध्य करता है विधुत वाहक बाल कहलाता है । इसकी मात्रा विभान्तर से सदैव अधिक होती है । इसकी इकाई वोल्ट है और V से दर्शाया जाता है । Colomb- यदि एक एम्पीयर करंट एक सेकंड में बहे तो एक कूलम्ब कहलाता है । Ampere - विधुत सर्किट में करंट बहने की दर को एम्पीयर कहते है । Volt - वोल्टेज की इकाई वोल्ट है यह प्रतिरोध तथा करंट का गुणा होता है ।

बिधुत धरा किसे कहते है -जब किसी चालक में मुक्त इलेक्ट्रॉन्स एक स्थान से दूसरे स्थान से दूसरे स्थान पर गतिमान होते है तो इलेक्ट्रॉन्स के इस बहाव को विधुत धरा कहते है । अर्थात कंडक्टर में इलेक्ट्रॉन्स के बहाव को इलेक्ट्रिक करंट कहते है । करंट को I द्वारा प्रदर्शित किया जाता है तथा करंट इकाई एम्पियर है ।

Voltage -किसी सर्किट के सिरों पर लगने वाला बिधुत वाहक बल वोल्टेज कहलाता है । वोल्टेज की इकाई वोल्ट है इसे वोल्ट में नापा जाता है तथा वोल्टेज को V से प्रदर्शित किया जाता है ।

Potential difference - विभान्तर - वह वोल्टेज जिसके कारण वश इलेक्ट्रॉन्स इलेक्ट्रिक सर्किट में बहन शुरू करते है विभान्तर कहलाता है । पोटेंशियल डिफ्रेंस को V द्वारा दर्शाया जाता है और इकाई वोल्ट है ।

E.M.F =Electromotive Force = विधुत वाहक बल - विधुत परिपथ में लगने वाला वह दबाब जो इलेक्ट्रॉन्स को परिपथ में बहने के लिए बाध्य करता है विधुत वाहक बाल कहलाता है । इसकी मात्रा विभान्तर से सदैव अधिक होती है । इसकी इकाई वोल्ट है और V से दर्शाया जाता है ।

Colomb- यदि एक एम्पीयर करंट एक सेकंड में बहे तो एक कूलम्ब कहलाता है ।

Ampere - विधुत सर्किट में करंट बहने की दर को एम्पीयर कहते है ।

Volt - वोल्टेज की इकाई वोल्ट है यह प्रतिरोध तथा करंट का गुणा होता है ।

एडी करंट - जब चुम्बक के दो पोलों के बीच चादर की गोल डिस्क को घुमाया जाता है तो डिस्क में emf उत्पन्न हो जाती है तथा डिस्क में करंट बहने लगता है जोकि अपने उत्पन्न कारण का विरोध करता है परिणाम स्वरूप डिस्क की गति धीमी हो जाती है तथा हीट उत्पन्न होती है । Disadvantages of Edy current - ट्रांसफारमर में एड़ी करंट के कारण गर्मी उत्पन्न होती है जिससे कि दक्षता कम होती है । मोटर में एड़ी करंट के कारण गर्मी उत्पन्न होती है जिससे कि वाइंडिंग का इंसुलेशन ख़राब होता है । ट्रांसफार्मर की कोर में एडी करंट बहने से ऊर्जा हानि होती है । एडी करंट की हानि को रोकने के लिए कोर को लेमिनटेड शीट सा बनाया जाता है । Advantages Edy current  एडी करंट के आधार पर इंडक्शन भट्टी कार्य करती है । मापन यंत्रों की डंपिंग के लिए एडी करंट का इस्तेमाल किया जाता है । जिससे की मीटर की सुई झटके नहीं मारती और अपनी सही जगह पर आसानी से खड़ी हो जाती है ।

एडी करंट - जब चुम्बक के दो पोलों के बीच चादर की गोल डिस्क को घुमाया जाता है तो डिस्क में emf उत्पन्न हो जाती है तथा डिस्क में करंट बहने लगता है जोकि अपने उत्पन्न कारण का विरोध करता है परिणाम स्वरूप डिस्क की गति धीमी हो जाती है तथा हीट उत्पन्न होती है ।

Disadvantages of Edy current -
ट्रांसफारमर में एड़ी करंट के कारण गर्मी उत्पन्न होती है जिससे कि दक्षता कम होती है । मोटर में एड़ी करंट के कारण गर्मी उत्पन्न होती है जिससे कि वाइंडिंग का इंसुलेशन ख़राब होता है ।
ट्रांसफार्मर की कोर में एडी करंट बहने से ऊर्जा हानि होती है ।

एडी करंट की हानि को रोकने के लिए कोर को लेमिनटेड शीट सा बनाया जाता है ।

Advantages Edy current 
एडी करंट के आधार पर इंडक्शन भट्टी कार्य करती है ।
मापन यंत्रों की डंपिंग के लिए एडी करंट का इस्तेमाल किया जाता है । जिससे की मीटर की सुई झटके नहीं मारती और अपनी सही जगह पर आसानी से खड़ी हो जाती है ।

करंट युक्त चालक में चुम्बकीय बाल रेखाओ की दिशा ज्ञात करने के लिए दो नियम प्रयोग किये जाते है - 1 Right hand thumb rule 2 Cork screw rule दायें हाथ के अंगूठे का नियम - किसी करंट युक्त कंडक्टर को दायें हाथ से इस प्रकार पकड़ें कि अंगूठा विधुत धरा की दिशा में रहे तो अंगूठा मैग्नेटिक फ्लक्स की दिशा को दर्शायेगा । कॉर्क स्क्रू रूल - किसी करंट युक्त चालक के एक सिरे पर बोतल की कारक खोलने वाले पेच की नोक विधुत धरा की दिशा में खोला जाये तो पेच के खोलने की दिशा ही करंट युक्त कंडक्टर में चुम्बकीय बल रेखाओं की दिशा होगी । एम्पियर का नियम - एम्पियर का नियम ओवर हेड लाइनों में करंट की दिशा ज्ञात करने के लिए इस्तेमाल किया जाता है । यह नियम वैज्ञानिक साइसदन एम्पियर ने बनाया था 

करंट युक्त चालक में चुम्बकीय बाल रेखाओ की दिशा ज्ञात करने के लिए दो नियम प्रयोग किये जाते है -
1 Right hand thumb rule
2 Cork screw rule
दायें हाथ के अंगूठे का नियम - किसी करंट युक्त कंडक्टर को दायें हाथ से इस प्रकार पकड़ें कि अंगूठा विधुत धरा की दिशा में रहे तो अंगूठा मैग्नेटिक फ्लक्स की दिशा को दर्शायेगा ।

कॉर्क स्क्रू रूल - किसी करंट युक्त चालक के एक सिरे पर बोतल की कारक खोलने वाले पेच की नोक विधुत धरा की दिशा में खोला जाये तो पेच के खोलने की दिशा ही करंट युक्त कंडक्टर में चुम्बकीय बल रेखाओं की दिशा होगी ।

एम्पियर का नियम - एम्पियर का नियम ओवर हेड लाइनों में करंट की दिशा ज्ञात करने के लिए इस्तेमाल किया जाता है । यह नियम वैज्ञानिक साइसदन एम्पियर ने बनाया था 

फ्लेमिंग का दायें हाथ का नियम - यह नियम जनरेटर में उत्पन्न emf (इ एम एफ) की दिशा ज्ञात करे के लिए प्रयोग किया जाता है । इस नियम के अनुसार बीच की उंगली जनरेटर में उत्पन्न emf की दिशा बताती है । अंगूठा कंडक्टर की गती की दिशा बताता है तथा पहली उंगली फ्लक्स की दिशा बताती है । फ्लेमिंग का बायें हाथ का नियम - यह नियम मोटर में घुमाव बल की दिशा ज्ञात करे के लिए प्रयोग किया जाता है । इस नियम के अनुसार अंगूठा मोटर के घूमने की दिशा बताता है बीच की उंगली मोटर में उत्पन्न करंट की दिशा बताती है । तथा पहली उंगली फ्लक्स की दिशा बताती है । लेंज लॉ - लेंज का नियम बताता है कि क्वाइल में उत्पन्न emf सदा अपने पैदा करने वाले स्त्रोत का विरोध करती है । जब चुम्बकिय पोलों के बीच चालक को घुमाया जाता है तो चालक में चुम्बकीय प्रेरण के सिद्धान्त अनुसार emf उत्पन्न हो जाती है । यह (emf) विधुत वाहक बल चुम्बकीय पोलों को पीछे धकेलने की कोशिश करता है

फ्लेमिंग का दायें हाथ का नियम - यह नियम जनरेटर में उत्पन्न emf (इ एम एफ) की दिशा ज्ञात करे के लिए प्रयोग किया जाता है । इस नियम के अनुसार बीच की उंगली जनरेटर में उत्पन्न emf की दिशा बताती है । अंगूठा कंडक्टर की गती की दिशा बताता है तथा पहली उंगली फ्लक्स की दिशा बताती है ।

फ्लेमिंग का बायें हाथ का नियम - यह नियम मोटर में घुमाव बल की दिशा ज्ञात करे के लिए प्रयोग किया जाता है । इस नियम के अनुसार अंगूठा मोटर के घूमने की दिशा बताता है बीच की उंगली मोटर में उत्पन्न करंट की दिशा बताती है । तथा पहली उंगली फ्लक्स की दिशा बताती है ।

लेंज लॉ - लेंज का नियम बताता है कि क्वाइल में उत्पन्न emf सदा अपने पैदा करने वाले स्त्रोत का विरोध करती है । जब चुम्बकिय पोलों के बीच चालक को घुमाया जाता है तो चालक में चुम्बकीय प्रेरण के सिद्धान्त अनुसार emf उत्पन्न हो जाती है । यह (emf) विधुत वाहक बल चुम्बकीय पोलों को पीछे धकेलने की कोशिश करता है

विधुत चुम्बकीय प्रेरण का सिद्धान्त -

विधुत चुम्बकीय प्रेरण का सिद्धान्त - चालक में विधुत धारा गुजारने पर चालक में चुम्बकीय बल रेखाएं उत्पन्न हो जाती है । और जब चुम्बकीय बल रेखाओं में किसी चालक को गतिमान किया जाये तो चालक द्वारा चुम्बकीय बल रेखाओं के कटने पर चालक में emf (इ.एम.एफ) उत्पन्न हो जाती है । यह गुण इलेक्ट्रो मेग्नेटिक इंडक्शन कहलाता है ।

इंडक्शन दो प्रकार की होती है - सेल्फ इंडक्शन और म्यूचुअल इंडक्शन ।
सेल्फ इंडक्शन - जब किसी क्वाइल को एसी सप्लाई से जोड़ा जाता है तो क्वाइल में भी अल्टर्नेटिंग मैग्नेटिक फील्ड उत्पन्न होती है जिससे क्वाइल में ई.एम.एफ उत्पन्न हो जाती है इस ई एम एफ को सेल्फ इंडियुस्ड emf कहा जाता है ।
सेल्फ इंडक्शन के लाभ -

फैन रेगुलेटर में इस्तेमाल होती है ।ऑटो ट्रांसफार्मर में ईस्तेमाल होती है ।लाइटनिंग अरेस्टर में इस्तेमाल होती है ।ट्यूब लाइट में इस्तेमाल होती है फ़िल्टर सर्किट में इस्तेमाल होती है 

म्युचुअल इंडक्शन - उडी सो क्वाइलों को समांतर में रखा जाये और सिर्फ एक क्वाइल को विधुत धरा से जोड़ा जाये तो उस क्वाइल के साथ साथ दूसरी क्वाइल में भी emf उत्पन्न हो जाती है जो म्यूचुअल इंडियुस्ड ई एम एफ कहलाती है ।

Featured Post

MAJOR 10 PANDEMICS (MAHAMARI) IN HISTORY

OUTBREAK: 10 OF THE WORST PANDEMICS IN HISTORY BY PRAVENDRA KUMAR RAJPOOT Scientists and medical researchers have for years have dif...